免疫沉淀實驗步驟: 1. 樣品制備 a. 懸浮細胞樣品處理:離心收集細胞(4℃, 1000g, 5 min),用手指把細胞用力彈散。按照6孔板每孔細胞加入150-250 μL裂解液的比例加入含蛋白酶抑制劑的裂解液(裂解液應在使用前數分鐘內加入蛋白酶抑制劑Cocktail,使蛋白酶抑制劑Cocktail的終濃度為1×)?;靹蚝笾糜诒咸幚?0 min;離心收集上清液(4℃, 14000g, 10 min),置于冰上備用(或置于-20℃長期保存)。 b. 貼壁細胞樣品處理:移去培養(yǎng)基,用PBS清洗細胞兩遍;用細胞刮棒刮脫細胞,收集至1.5mL EP管內,按照6孔板每孔加...
Co-IP(免疫共沉淀)技術主要用于研究蛋白質之間的相互作用,其實驗設計如下: 1. 樣品準備:Co-IP實驗通常有兩種,一種是內源性蛋白相互作用驗證,一種是非內源性蛋白相互作用驗證。內源性相互作用通過質粒共轉染的方式將兩種蛋白轉染至同一細胞內表達;非內源性相互作用則是將含有靶蛋白的組織進行預處理及細胞裂解獲得細胞裂解液。 2. 沉淀誘餌蛋白:利用磁珠偶聯抗體沉淀誘餌蛋白。在樣品中加入磁珠偶聯抗體,抗體會與誘餌蛋白結合,利用磁鐵將磁珠拉下,同時誘餌蛋白會一起被沉淀出來。 3. SDS-PAGE及WB檢測:得到沉淀后,需要驗證沉淀中是否存在相互作用蛋白。先利用SDS-PAG...
免疫沉淀技術的實驗設計通常包括以下幾個關鍵步驟: 1. 目標蛋白質的選擇: 2. 抗體的選擇:選擇特異性強、親和力高的抗體來捕獲目標蛋白質 3. 樣本的準備:收集和準備細胞或組織樣本。 4. 蛋白質的裂解和釋放:選擇合適的裂解條件,如pH值、離子強度、去污劑等。 5. 蛋白質濃度的測定:確定裂解液中蛋白質的濃度,以便于后續(xù)步驟的標準化。 6. 免疫沉淀的操作:將特異性抗體與裂解液混合,并在適宜的條件下孵育,以形成抗體-抗原復合物。 7. 非特異性結合的減少:通過預純化步驟去除可能的非特異性結合蛋白。 8. 洗滌:多次洗滌以去除未結合的蛋白質和...
免疫沉淀Co-IP實驗中磁珠還是瓊脂糖珠的選擇取決于客戶實驗情況。 瓊脂糖珠海綿狀的結構 (直徑 50-150 μm) 可以結合抗體 (繼而結合靶蛋白) ,它能夠直接高效、快速結合抗體,而不需借助特殊的專業(yè)設備。瓊脂糖珠呈多孔結構,這使得它們擁有更大的表面積可與蛋白質相互接觸,具有更高的結合載量。 與瓊脂糖珠不同,磁珠是固體,抗體的結合限于磁珠的表面。磁珠 (直徑 1-4 μm) 明顯小于瓊脂糖珠 ,盡管磁珠沒有多孔中心增加結合能力,但每體積的磁珠數量比瓊脂糖珠多,使磁珠擁有足夠的抗體結合表面積滿足高容量的抗體結合。 簡而言之,瓊脂糖珠的結合能力較強,而磁珠在得率,...
RIP實驗步驟通常包括: 1. 細胞收集與交聯:培養(yǎng)細胞至適當密度。使用交聯劑(如甲醛)進行交聯,以固定蛋白質-RNA復合物。 2. 細胞裂解:收集細胞并進行裂解,釋放RNA-蛋白質復合物。在裂解過程中添加蛋白酶抑制劑以防止蛋白質降解。 3. 超聲處理:使用超聲波破壞細胞,獲得更小的染色質片段,這有助于后續(xù)步驟中抗體的接觸。 4. 除去細胞碎片:通過離心去除細胞碎片和未裂解的細胞,收集含RNA-蛋白質復合物的上清液。 5. 免疫沉淀:將針對特定RNA結合蛋白(RBP)的抗體加入到上清液中。孵育一段時間,使抗體與目標蛋白充分結合。 6. 捕獲免疫復合物:添...
染色質免疫共沉淀(Chromatinimmunoprecipitation,ChIP)技術是目前公認的研究此相互作用的選擇,是真核生物基因表達機制研究中不可或缺的技術之一。 它的基本原理是在活細胞狀態(tài)下,固定蛋白質-DNA(染色質)復合物,并將其切斷為一定長度范圍內的染色質小片段,然后通過免疫學方法(抗體親和)沉淀此復合體,特異性地富集目的蛋白結合的 DNA,通過對目的片段的純化與后期檢測,從而獲得蛋白質與 DNA 相互作用的信息。 這項技術通過蛋白質與DNA互作來分析目標基因活性以及已知蛋白質的靶基因,被廣泛應用于體內轉錄調控因子與靶基因啟動子上特異核苷酸序列結合方面的研究。...
Co-IP(Co-Immunoprecipitation,共免疫沉淀)的實驗方法通常包括以下步驟: 1. 細胞培養(yǎng)與裂解:細胞在適宜的培養(yǎng)條件下生長到適當的密度。 蛋白質分離:裂解后的細胞混合物通過離心去除未破碎的細胞碎片和未裂解的細胞。收集上清液 2. 抗體的添加:將特異性抗體(針對目標蛋白質的抗體)加入到裂解物中。 3. 免疫復合物的形成:抗體與目標蛋白結合后,形成免疫復合物。 4. 親和介質的使用:向混合物中添加蛋白A或蛋白G結合的珠子(如瓊脂糖或磁性珠子)。 5. 免疫復合物的捕獲:將混合物與珠子孵育一段時間后,使用磁鐵或離心的方法將珠子收集起來...
免疫沉淀IP實驗中磁珠還是瓊脂糖珠的選擇取決于客戶實驗情況。 瓊脂糖珠海綿狀的結構 (直徑 50-150 μm) 可以結合抗體 (繼而結合靶蛋白) ,它能夠直接高效、快速結合抗體,而不需借助特殊的專業(yè)設備。瓊脂糖珠呈多孔結構,這使得它們擁有更大的表面積可與蛋白質相互接觸,具有更高的結合載量。 與瓊脂糖珠不同,磁珠是固體,抗體的結合限于磁珠的表面。磁珠 (直徑 1-4 μm) 明顯小于瓊脂糖珠 ,盡管磁珠沒有多孔中心增加結合能力,但每體積的磁珠數量比瓊脂糖珠多,使磁珠擁有足夠的抗體結合表面積滿足高容量的抗體結合。 簡而言之,瓊脂糖珠的結合能力較強,而磁珠在得率,可重復...
免疫沉淀RIP實驗中磁珠還是瓊脂糖珠的選擇取決于客戶實驗情況。 瓊脂糖珠海綿狀的結構 (直徑 50-150 μm) 可以結合抗體 (繼而結合靶蛋白) ,它能夠直接高效、快速結合抗體,而不需借助特殊的專業(yè)設備。瓊脂糖珠呈多孔結構,這使得它們擁有更大的表面積可與蛋白質相互接觸,具有更高的結合載量。 與瓊脂糖珠不同,磁珠是固體,抗體的結合限于磁珠的表面。磁珠 (直徑 1-4 μm) 明顯小于瓊脂糖珠 ,盡管磁珠沒有多孔中心增加結合能力,但每體積的磁珠數量比瓊脂糖珠多,使磁珠擁有足夠的抗體結合表面積滿足高容量的抗體結合。 簡而言之,瓊脂糖珠的結合能力較強,而磁珠在得率,可重...
免疫沉淀技術(Immunoprecipitation, IP)是一種利用抗體與特定蛋白質結合的特性,從復雜樣本中分離和純化目標蛋白質的實驗方法。這項技術在生物醫(yī)學研究中有著廣泛的應用場景,以下是一些主要的應用領域: 1. 蛋白質相互作用分析:通過免疫沉淀技術,研究人員可以研究蛋白質之間的相互作用,揭示蛋白質復合物的組成以及它們在細胞內的功能和調控機制。 2. 抗體藥物開發(fā):免疫沉淀技術可以用于研究抗體藥物與其靶標蛋白的結合特性,評估抗體藥物的親和力和特異性,指導抗體藥物的設計和優(yōu)化。 3. 蛋白質表達水平分析:通過比較不同條件下的免疫沉淀結果,可以評估目標蛋白的相對量,進...
ChIP技術的應用: 1. 轉錄因子結合位點的鑒定:研究特定轉錄因子在基因組上的結合模式。 2. 組蛋白修飾的分布:分析不同組蛋白修飾在基因組上的分布情況,這些修飾與基因的活躍或沉默有關。 3. DNA甲基化研究:結合ChIP技術可以研究DNA甲基化對基因表達的影響。 4. 染色質結構和功能:研究染色質重塑對基因表達和細胞功能的影響。 5. 疾病相關基因的調控:研究疾病狀態(tài)下基因調控網絡的變化。 ChIP技術是表觀遺傳學研究中的一個重要工具,它可以幫助科學家們理解基因表達是如何在分子水平上被精確調控的。 免疫沉淀技術IP的實驗方法。ChIP免疫沉淀 免...
免疫沉淀技術(Immunoprecipitation, IP)是一種利用抗體與特定蛋白質結合的特性,從復雜樣本中分離和純化目標蛋白質的實驗方法。這項技術在生物醫(yī)學研究中有著廣泛的應用場景,以下是一些主要的應用領域: 1. 蛋白質相互作用分析:通過免疫沉淀技術,研究人員可以研究蛋白質之間的相互作用,揭示蛋白質復合物的組成以及它們在細胞內的功能和調控機制。 2. 抗體藥物開發(fā):免疫沉淀技術可以用于研究抗體藥物與其靶標蛋白的結合特性,評估抗體藥物的親和力和特異性,指導抗體藥物的設計和優(yōu)化。 3. 蛋白質表達水平分析:通過比較不同條件下的免疫沉淀結果,可以評估目標蛋白的相對量,進...
真核生物的基因組 DNA 以染色質(Chromatin)的形式存在。因此,研究蛋白質與 DNA 在染色質環(huán)境中的相互作用是闡明真核生物基因表達機制的基本途徑,而染色質免疫共沉淀(Chromatinimmunoprecipitation,ChIP)技術是目前公認的研究此相互作用的選擇,是真核生物基因表達機制研究中不可或缺的技術之一。 它的基本原理是在活細胞狀態(tài)下,固定蛋白質-DNA(染色質)復合物,并將其切斷為一定長度范圍內的染色質小片段,然后通過免疫學方法(抗體親和)沉淀此復合體,特異性地富集目的蛋白結合的 DNA,通過對目的片段的純化與后期檢測,從而獲得蛋白質與 DNA 相互作用的...
真核生物的基因組 DNA 以染色質(Chromatin)的形式存在。因此,研究蛋白質與 DNA 在染色質環(huán)境中的相互作用是闡明真核生物基因表達機制的基本途徑,而染色質免疫共沉淀(Chromatinimmunoprecipitation,ChIP)技術是目前公認的研究此相互作用的選擇,是真核生物基因表達機制研究中不可或缺的技術之一。 它的基本原理是在活細胞狀態(tài)下,固定蛋白質-DNA(染色質)復合物,并將其切斷為一定長度范圍內的染色質小片段,然后通過免疫學方法(抗體親和)沉淀此復合體,特異性地富集目的蛋白結合的 DNA,通過對目的片段的純化與后期檢測,從而獲得蛋白質與 DNA 相互作用的...
免疫沉淀技術RIP(RNA Immunoprecipitation,RNA免疫沉淀)的實驗方法基于以下幾個關鍵步驟: 1. 細胞裂解:首先,細胞或組織樣本被裂解,以釋放細胞內的蛋白質和RNA復合物。 2.抗體特異性結合:裂解后的樣本中加入針對特定RNA結合蛋白的抗體。這些抗體能夠特異性地識別并結合到目標蛋白。 3. 免疫復合物形成:抗體與目標蛋白結合后,形成抗體-蛋白質-RNA復合物。 4. 親和介質捕獲:使用蛋白A或蛋白G結合的珠子(如瓊脂糖或磁性珠子)來捕獲這些抗體-蛋白質-RNA復合物。蛋白A或蛋白G能夠與抗體的Fc部分結合,從而拉下與之結合的復合物。 ...
ChIP(染色質免疫沉淀)實驗是一種用于研究蛋白質與DNA相互作用的技術。以下是ChIP實驗的實驗設計概述: 1. 目標蛋白的選擇:確定您想要研究的目標蛋白,例如特定的轉錄因子或組蛋白修飾。 2. 樣本的準備:根據研究的需要選擇合適的細胞或組織樣本。 3. 抗體的選擇:選擇具有高特異性和親和力的抗體,這對于實驗的成功至關重要。 4. 交聯:使用甲醛等交聯劑將蛋白質與DNA在體內共價結合,形成穩(wěn)定的蛋白質-DNA復合物。 5. 細胞裂解:裂解細胞以釋放染色質,同時保持蛋白質-DNA復合物的完整性。 6. 染色質的剪切:通過超聲或酶消化將染色質剪切成適當大小...
免疫沉淀技術(Immunoprecipitation, IP)的實驗方法通常包括以下步驟: 1. 樣本準備 2. 蛋白質濃度測定:使用BCA、Bradford或Lowry等方法測定裂解液中蛋白質的濃度。 3. 抗體預處理:如果使用預固定的抗體,需先將抗體固定在固相支持物上,如瓊脂糖珠或磁性微珠。 4. 免疫沉淀反應:將裂解液與特異性抗體(固定或未固定)混合,并在4°C下緩慢搖晃孵育過夜,以允許抗體與目標蛋白質充分結合。 5. 固相支持物的回收:對于未固定的抗體,加入與抗體特異性結合的蛋白A或蛋白G結合的固相支持物。 6. 洗滌:去除未結合的蛋白質和雜質,...
ChIP技術的應用: 1. 轉錄因子結合位點的鑒定:研究特定轉錄因子在基因組上的結合模式。 2. 組蛋白修飾的分布:分析不同組蛋白修飾在基因組上的分布情況,這些修飾與基因的活躍或沉默有關。 3. DNA甲基化研究:結合ChIP技術可以研究DNA甲基化對基因表達的影響。 4. 染色質結構和功能:研究染色質重塑對基因表達和細胞功能的影響。 5. 疾病相關基因的調控:研究疾病狀態(tài)下基因調控網絡的變化。 ChIP技術是表觀遺傳學研究中的一個重要工具,它可以幫助科學家們理解基因表達是如何在分子水平上被精確調控的。 免疫沉淀技術ChIP的原理是什么?北京Co IP免...
Co-IP的實驗步驟: 1. 細胞裂解:首先,細胞或組織被裂解,釋放其中的蛋白質。 2. 抗體結合:然后,將特異性抗體(針對已知蛋白質之一的抗體)加入到裂解物中。這些抗體會特異性地結合到目標蛋白(誘餌蛋白)上。 3. 免疫復合物形成:抗體與目標蛋白結合后,形成免疫復合物。 4. 沉淀:接著,使用蛋白A或蛋白G結合的珠子(如瓊脂糖或磁性珠子)來捕獲免疫復合物。蛋白A或蛋白G能夠與抗體的Fc部分結合,從而拉下抗體以及與之結合的目標蛋白和任何相關的相互作用蛋白。 5. 洗滌:捕獲的免疫復合物被洗滌以去除未特異性結合的蛋白質。 6. 洗脫和分析:免疫復合物被洗脫...
免疫沉淀技術(Immunoprecipitation, IP)的實驗方法通常包括以下步驟: 1. 樣本準備 2. 蛋白質濃度測定:使用BCA、Bradford或Lowry等方法測定裂解液中蛋白質的濃度。 3. 抗體預處理:如果使用預固定的抗體,需先將抗體固定在固相支持物上,如瓊脂糖珠或磁性微珠。 4. 免疫沉淀反應:將裂解液與特異性抗體(固定或未固定)混合,并在4°C下緩慢搖晃孵育過夜,以允許抗體與目標蛋白質充分結合。 5. 固相支持物的回收:對于未固定的抗體,加入與抗體特異性結合的蛋白A或蛋白G結合的固相支持物。 6. 洗滌:去除未結合的蛋白質和雜質,...
免疫沉淀(Co-IP)實驗中抗體的選擇非常關鍵,因為抗體的特異性和親和力直接影響到實驗的成功與否。 1. 特異性:抗體應當對目標蛋白具有高度的特異性,以避免與其他蛋白發(fā)生非特異性結合,導致假陽性結果。 2. 親和力:抗體對目標蛋白的親和力要足夠高,以確保在免疫沉淀過程中能夠有效地捕獲目標蛋白。 3. 抗體類型:單克隆抗體和多克隆抗體都可以用于IP實驗。單克隆抗體提供更高的特異性和批間一致性,而多克隆抗體可能提供更強的結合能力和更廣的表位覆蓋。 4. 應用驗證:選擇已經過免疫沉淀(Co-IP)或相關應用(如Western blot, IHC)驗證的抗體,這增加了實驗成...
ChIP實驗的基本步驟包括: 1. 交聯(Crosslinking):細胞被甲醛等交聯劑處理,使得蛋白質和DNA之間的相互作用被固定,形成穩(wěn)定的蛋白質-DNA復合物。 2. 細胞裂解:裂解細胞,釋放染色質,同時保持蛋白質-DNA復合物的完整性。 3. 超聲或酶解:通過超聲或酶解將染色質切割成較小的片段,以便于后續(xù)步驟中的免疫沉淀。 4. 免疫沉淀(Immunoprecipitation):加入針對特定組蛋白修飾或轉錄因子的抗體,這些抗體會特異性地結合到目標蛋白質上。 5. 捕獲復合物:使用蛋白A或蛋白G結合的珠子捕獲抗體-蛋白質-DNA復合物。 6. 洗...
ChIP技術的應用: 1. 轉錄因子結合位點的鑒定:研究特定轉錄因子在基因組上的結合模式。 2. 組蛋白修飾的分布:分析不同組蛋白修飾在基因組上的分布情況,這些修飾與基因的活躍或沉默有關。 3. DNA甲基化研究:結合ChIP技術可以研究DNA甲基化對基因表達的影響。 4. 染色質結構和功能:研究染色質重塑對基因表達和細胞功能的影響。 5. 疾病相關基因的調控:研究疾病狀態(tài)下基因調控網絡的變化。 ChIP技術是表觀遺傳學研究中的一個重要工具,它可以幫助科學家們理解基因表達是如何在分子水平上被精確調控的。 免疫沉淀技術IP的實驗設計。溫州IP免疫沉淀實驗視...
免疫共沉淀分析(Co-IP)實驗原理與IP十分類似,基本的技術都是采用目標抗原特異性的固相化抗體;但IP的目標是純化單一抗原,而Co-IP旨在分離抗原及與抗原結合的蛋白質或配體。 在Co-IP實驗中,已知抗原稱為誘餌蛋白,與之結合的蛋白則稱為靶蛋白。靶蛋白可能是一些復雜的伴侶蛋白、信號分子、結構蛋白、輔助因子等,蛋白間相互作用強度范圍可能介于高度瞬時和十分穩(wěn)定之間。基本的Co-IP實驗方案與IP相同,實際上任何IP系統均可用于Co-IP。但是,還有許多其他因素需要考慮,例如,結合和洗滌條件的優(yōu)化,優(yōu)化時,需要考慮到誘餌蛋白-靶蛋白的相互作用強度以及抗體-誘餌蛋白的親和力。 免疫沉淀技術Ch...
免疫共沉淀分析(Co-IP)實驗原理與IP十分類似,基本的技術都是采用目標抗原特異性的固相化抗體;但IP的目標是純化單一抗原,而Co-IP旨在分離抗原及與抗原結合的蛋白質或配體。 在Co-IP實驗中,已知抗原稱為誘餌蛋白,與之結合的蛋白則稱為靶蛋白。靶蛋白可能是一些復雜的伴侶蛋白、信號分子、結構蛋白、輔助因子等,蛋白間相互作用強度范圍可能介于高度瞬時和十分穩(wěn)定之間。基本的Co-IP實驗方案與IP相同,實際上任何IP系統均可用于Co-IP。但是,還有許多其他因素需要考慮,例如,結合和洗滌條件的優(yōu)化,優(yōu)化時,需要考慮到誘餌蛋白-靶蛋白的相互作用強度以及抗體-誘餌蛋白的親和力。 免疫沉淀技術Co...
Co-IP(Co-Immunoprecipitation,共免疫沉淀)的實驗方法通常包括以下步驟: 1. 細胞培養(yǎng)與裂解:細胞在適宜的培養(yǎng)條件下生長到適當的密度。 蛋白質分離:裂解后的細胞混合物通過離心去除未破碎的細胞碎片和未裂解的細胞。收集上清液 2. 抗體的添加:將特異性抗體(針對目標蛋白質的抗體)加入到裂解物中。 3. 免疫復合物的形成:抗體與目標蛋白結合后,形成免疫復合物。 4. 親和介質的使用:向混合物中添加蛋白A或蛋白G結合的珠子(如瓊脂糖或磁性珠子)。 5. 免疫復合物的捕獲:將混合物與珠子孵育一段時間后,使用磁鐵或離心的方法將珠子收集起來...
ChIP(染色質免疫沉淀)實驗是一種用于研究蛋白質與DNA相互作用的技術。以下是ChIP實驗的實驗設計概述: 1. 目標蛋白的選擇:確定您想要研究的目標蛋白,例如特定的轉錄因子或組蛋白修飾。 2. 樣本的準備:根據研究的需要選擇合適的細胞或組織樣本。 3. 抗體的選擇:選擇具有高特異性和親和力的抗體,這對于實驗的成功至關重要。 4. 交聯:使用甲醛等交聯劑將蛋白質與DNA在體內共價結合,形成穩(wěn)定的蛋白質-DNA復合物。 5. 細胞裂解:裂解細胞以釋放染色質,同時保持蛋白質-DNA復合物的完整性。 6. 染色質的剪切:通過超聲或酶消化將染色質剪切成適當大小...
免疫沉淀純化所得抗原純度低一般有多種原因: 1. 非特異性蛋白污染 如果洗脫所得抗原純度較低,則有幾種方法可以進行優(yōu)化。在結合或洗滌緩沖液中加入去污劑或其他可以降低非特異性結合的組分。使用普通微珠預純化樣本還可以降低非目標分子的共純化。此外,還可以使用無關蛋白 (如BSA) 封閉微珠 。 2. 抗體污染 使用蛋白A、G或A/G的經典免疫沉淀實驗中會出現抗體與抗原共洗脫的情況。如果共洗脫會影響下游分析,則需要使用抗體通過共價連接固定至微珠的方法進行實驗,如Pierce 直接 IP 或交聯 IP 的形式。 免疫沉淀的原理是什么?深圳anti DYKDDDDK免疫沉淀磁珠...
ChIP技術的應用: 1. 轉錄因子結合位點的鑒定:研究特定轉錄因子在基因組上的結合模式。 2. 組蛋白修飾的分布:分析不同組蛋白修飾在基因組上的分布情況,這些修飾與基因的活躍或沉默有關。 3. DNA甲基化研究:結合ChIP技術可以研究DNA甲基化對基因表達的影響。 4. 染色質結構和功能:研究染色質重塑對基因表達和細胞功能的影響。 5. 疾病相關基因的調控:研究疾病狀態(tài)下基因調控網絡的變化。 ChIP技術是表觀遺傳學研究中的一個重要工具,它可以幫助科學家們理解基因表達是如何在分子水平上被精確調控的。 免疫沉淀技術的綜述。免疫沉淀實驗原理 免疫沉淀技...
Co-IP(免疫共沉淀)技術主要用于研究蛋白質之間的相互作用,其應用場景如下: 1. 蛋白質相互作用網絡的鑒定:Co-IP可用于構建蛋白質相互作用網絡,發(fā)現目標蛋白的結合伙伴。 2. 信號傳導途徑的研究:通過Co-IP技術,科學家們發(fā)現了許多關鍵的細胞信號通路,如MAPK和PI3K/Akt通路等,為深入理解這些通路的功能和調控機制提供了重要線索。 3. 藥物靶點篩選:利用Co-IP技術,研究人員可以篩選潛在的藥物靶點。 疾病機制研究:通過分析疾病相關蛋白質的相互作用,Co-IP有助于揭示疾病的分子機制。 4. 抗體藥物開發(fā):Co-IP可用于研究抗體藥物與其靶標...